• Users Online: 50
  • Print this page
  • Email this page
REVIEW ARTICLE
Year : 2018  |  Volume : 2  |  Issue : 2  |  Page : 100-105

A review on the C-terminal domain of channel protein with necrosis-inducing toxin as a novel necrotizing toxin of Mycobacterium tuberculosis


1 Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Correspondence Address:
Dr. Tayebeh Farhadi
Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, P. O. Box 19569, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_57_18

Rights and Permissions

Tuberculosis is a highly infectious illness that has been considered a worldwide health danger. Existence inside macrophages is a main characteristic of Mycobacterium tuberculosis virulence and essential to make a perdurable infection in the human body. Recently, a pivotal cytotoxicity determinant of M. tuberculosis in macrophages was discovered and named channel protein with necrosis-inducing toxin (CpnT). CpnT includes an N-terminal channel domain and a C-terminal domain (CTD). The CTD is a secreted toxin and can induce a necrotizing process in the macrophages. The CTD has strong nicotinamide adenine dinucleotide (NAD+)-glycohydrolase activity that empties NAD+ reservoirs of cells, resulting in human cell necrosis. In this study, the structural and functional properties of the CTD were reviewed. Besides, to predict local similarity between the CTD and other protein sequences and infer the functional and evolutionary relationships, the Basic Local Alignment Search Tool was used. Several protein sequences of the Mycobacterium showed >50% similarity to the CTD, indicating species specificity of the CTD. However, some prokaryotic and eukaryotic sequences showed 20%–45% similarity to the CTD, indicating that the CTD belongs to an uncharacterized protein family including nonbacterial proteins.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed429    
    Printed34    
    Emailed0    
    PDF Downloaded97    
    Comments [Add]    

Recommend this journal