• Users Online: 815
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 3  |  Issue : 3  |  Page : 196-201

In vivo antimalarial activity, toxicity, and phytochemical composition of total extracts from securidaca longepedunculata Fresen. (polygalaceae)


Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya

Correspondence Address:
Dr. Joseph Mwanzia Nguta
Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, College of Agriculture and Veterinary Sciences, University of Nairobi, P. O. Box 29053-00625, Nairobi
Kenya
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_82_19

Rights and Permissions

Introduction: Alternative antimalarial drugs are urgently required. Securidaca longepedunculata Fresen. (Polygalaceae) is a medicinal plant with a long history of use in African ethnomedicine to treat malaria and other illnesses. The efficacy, safety, and chemical composition of chloroform: methanol (1:1) and aqueous total extracts from the leaves, stem, and roots of S. longepedunculata were investigated. Methods: Adult Swiss female mice were infected with 107 erythrocytes parasitized with Plasmodium berghei (strain ANKA) on day 0 as a model of malaria. Effects of crude extracts at a dosage rate of 100 mg/kg of body weight on parasitemia were measured over a 4-day period. To evaluate acute toxicity, the mice were administered crude extracts by oral gavage at 50, 300, and 2000 mg/kg of body weight and observed over a 24-h period. Cytotoxic effects of crude extracts were measured using human epithelial-2 cells in a 96-well microtiter plate over a 24-h period. Results: Chloroform: methanol (1:1) and aqueous root extracts demonstrated significant chemosuppressive activities of 91.46% and 87.64%, respectively (P < 0.05). CC50values ranged from 115 to 140 μg/mL and an LD50>2000 mg/kg body weight. Crude extracts contained alkaloids, anthraquinones, flavonoids, saponins, steroids, tannins, and triterpenoids. Conclusion: The findings from the current study validate ethnopharmacological use of the plant, while demonstrating its potential as a possible source of new lead molecules against malaria.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed219    
    Printed18    
    Emailed0    
    PDF Downloaded33    
    Comments [Add]    

Recommend this journal