• Users Online: 623
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 1  |  Issue : 1  |  Page : 25-28

Effects of two-body wear on microfill, nanofill, and nanohybrid restorative composites


1 Department of Technical Science of Pasinler Vocational School, Ataturk University; Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum, Turkey
2 Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum, Turkey
3 Department of Prosthodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
4 Department of Technical Science of Vocational School, Igdır University, Igdır, Turkey

Correspondence Address:
Efe Çetin Yilmaz
Department of Technical Science of Pasinler Vocational School, Ataturk University, Erzurum
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_36_17

Get Permissions

Background: The purpose of this study was to investigate two-body wear resistance and hardness of different three modern composite materials. Methods: In the conditions recommended by the manufacturer five pieces were produced from each material. All samples were kept in distill water for 1 week and determined Vickers hardness (HV) before two-body wear test. Then, two-body wear tests were performed using a computer controlled chewing simulator. In this study, the chewing simulator was programmed to provide a 2 mm vertical movement and a 0.7 mm horizontal movement. For each wear test, Al2O3 with a diameter of 6 mm was used as antagonist material. The mean volume loss of all samples after the wear tests was determined with three dimensional profilometry. In addition to a random specimen was selected from each test group and SEM images were taken for analysis of wear tracks. Mean and standard deviation values were calculated and evaluated with the one-way ANOVA. Results: The hardness values of the materials tested in this study were measured between about 49 HV and 78 HV. Significantly, lowest mean volume loss was detected for the Heliomolar at about 3.1 μm3 whereas the highest mean volume loss was detected for the Silorane at about 6.4 μm3 after 360.000 chewing cycles. Conclusions: However, among the materials tested in this study suggested correlations between HV and two-body wear resistance are not significant.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed146    
    Printed20    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal