• Users Online: 305
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 2  |  Issue : 1  |  Page : 59-62

Cytotoxicity effects of endodontic irrigants on permanent and primary cell lines


1 Department of Conservative Dentistry and Endodontics, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
2 Department of Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE University, Mangalore, Karnataka, India
3 Department of Microbiology, AB Shetty Memorial Institute of Dental Sciences, NITTE University, Mangalore, Karnataka, India
4 Department of Biochemistry, AB Shetty Memorial Institute of Dental Sciences, NITTE University, Mangalore, Karnataka, India

Correspondence Address:
Dr. Manikandan Ravinanthanan
Department of Conservative Dentistry and Endodontics, PMS College of Dental Science and Research, Vattappara, Thiruvananthapuram, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_92_17

Rights and Permissions

Background: Irrigants plays a vital role in disinfection of the root canal system. Although concentration dependent, a fine balance between antimicrobial efficacy and biocompatibility need to be maintained at all times. The aim of the present study was to evaluate the cytotoxicity of conventional irrigants on two different cell lines in a dose-dependent manner in vitro. Methods: Sodium hypochlorite (NaOCl), chlorhexidine digluconate (CHX), and iodine potassium iodide (IKI) were prepared in concentrations of 5%, 2.5%, 2%, and 1%. About 0.9% saline served as negative control and Biopure MTADTM (100%) as positive control. Permanent (Henrietta Lacks [HeLa]) and primary (human gingival fibroblast [HGF]) cell lines were chosen to evaluate the cytotoxicity of the irrigants by trypan blue assay. A volume of 30 μl of the cell suspension was treated with 20 μl of irrigants. The cell suspension was loaded into Neubauer chamber after 5 min, and cell count was performed under inverted microscope and expressed as viability percentage. Results: NaOCl at all concentrations was cytotoxic on both cell lines; MTAD on HeLa had nonviable scores with limited viability on HGF. Only 1% IKI had better viability than higher concentrations. Although 1% CHX had higher viability on both cell lines, bactericidal concentration of 2% CHX showed promising results. Conclusion: Target cell line (HGF) appears to be more sensitive than the use of nontarget cell line (HeLa) for evaluating cytotoxicity. NaOCl and MTAD were cytotoxic and should be used with caution. Lower concentrations of CHX appear to be less cytotoxic than any irrigant and concentrations tested.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2666    
    Printed122    
    Emailed0    
    PDF Downloaded284    
    Comments [Add]    
    Cited by others 2    

Recommend this journal