• Users Online: 77
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 4  |  Issue : 4  |  Page : 355-364

Development of polyepitopic immunogenic contrast against hepatitis C virus 1a-6a genotype by in silico approach


1 Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences; Cellular & Molecular Biology Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Systems Biomedicine, Pasteur Institute of Iran, Tehran, Iran
3 Cellular & Molecular Biology Research Center Shahid Beheshti University of Medical Sciences; Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
5 Cellular & Molecular Biology Research Center Shahid Beheshti University of Medical Sciences, Tehran, Iran
6 Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Fatemeh Yarian
Shahid Beheshti University of Medical Sciences, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_186_20

Rights and Permissions

Background: Hepatitis C is a viral disease associated with chronic hepatitis and hepatocellular carcinoma. Hepatitis C virus (HCV) plays a critical role in the pathogenesis of this disease. Nonstructural proteins including NS3, NS4A, and NS5A are important in viral replication and translation. Since recent therapies are not appropriate for anti-HCV activity in humans, the main objective of this study is the use of immunoinformatic approaches for designing a novel multiepitope peptide with antigenic properties and examining it as a vaccine against (1a-6a) genotypes of the virus. These types of studies can be helpful for the development of new vaccine strategies against hepatitis C disease. Methods: The conserved position of nonstructural proteins (NS3/NS4a and NS5A) of HCV genotypes was used for vaccine design. Linear and conformational epitopes of B cell, MHC-I, MHC-II binding epitopes, and interferon-gamma inducing epitopes were determined in the construction of the vaccine. Molecular dynamics (MD) simulation and protein docking multiepitope peptides with toll-like receptor (TLR) 3 and TLR8 were analyzed. Results: MD simulation revealed a stable structure of candidate vaccines. Hence, docking results showed multiepitope peptides interaction with TLR3 and TLR8 and epitopes related to NS3 protein have the most interaction. These analyses suggest that designed vaccines can induce humoral and cellular immune responses against HCV. Conclusions: These analyses suggest that designed vaccines can induce humoral and cellular immune responses against HCV. However, experimental tests are required to evaluate the safety and immunogenicity profile of designed multiepitope vaccines.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed976    
    Printed20    
    Emailed0    
    PDF Downloaded98    
    Comments [Add]    

Recommend this journal