• Users Online: 185
  • Print this page
  • Email this page
REVIEW ARTICLE
Year : 2021  |  Volume : 5  |  Issue : 4  |  Page : 366-373

Plant-based vaccines: Potentiality against severe acute respiratory syndrome coronavirus 2


1 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah; Department of Zoology, Hooghly Mohsin College (Affiliated to University of Burdwan), Chinsurah, West Bengal, India
2 Department of Physiology, Santiniketan Medical College, Bolpur, West Bengal, India
3 Department of Physiology, Raiganj Government Medical College, Raiganj, West Bengal, India
4 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India

Correspondence Address:
Rabindranath Majumder
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711 103, West Bengal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/bbrj.bbrj_185_21

Rights and Permissions

The pandemic of novel coronavirus disease-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has stimulated scientists from different backgrounds to gear up on developing vaccines against the virus. Several antigenic epitopes of the virus have the potential to induce an immunogenic response, among which viral spike protein (“S” protein) is considered to be the most suitable vaccine candidate. In this review, the latest progress in the field of plant molecular pharming (PMF), its application, limitations, and commercial initiatives toward the production of the SARS-CoV-2 vaccine have been discussed. Vaccine production by PMF has gained considerable attention these days and can be used for large-scale commercial production of antigenic proteins, antibodies, and other biopharmaceuticals. New age plant breeding techniques facilitated by CRISPR-Cas-based genome editing technology and next-generation sequencing methods also help to achieve greater precision and rapidity. Several unique advantages are offered by plant-based vaccine production techniques over that of the microbial or mammalian cell culture system. Virus-like particles and Agrobacterium-mediated transient somatic expression systems have a high potential for the large scale, cost-effective, and robust production of plant-derived vaccines against SARS-CoV-2.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2484    
    Printed98    
    Emailed0    
    PDF Downloaded311    
    Comments [Add]    
    Cited by others 3    

Recommend this journal